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Abstract. A new deterministic branch and bound algorithm is presented in this paper for the global
optimization of continuous problems that involve concave univariate, bilinear and linear fractional
terms. The proposed algorithm, thebranch and contract algorithm, relies on the use of abounds-
contraction subproblemthat aims at reducing the size of the search region by eliminating portions
of the domain in which the objective function takes only values above a known upper bound. The
solution of contraction subproblems at selected branch and bound nodes is performed within afinite
contraction operationthat helps reducing the total number of nodes in the branch and bound solution
tree. The use of the proposed algorithm is illustrated with several numerical examples.
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1. Introduction

This paper deals with the development of a new deterministic algorithm for the
global optimization of nonlinear programs involving concave univariate, bilinear
and linear fractional terms in the objective function and constraints. For reviews
on methods that address problems with these classes of functions see for instance:
Benson (1995), Al-Khayyal (1990), and Schaible (1994, 1995). The extension of
the proposed approach of this paper to the mixed-integer case can be found in
Zamora (1997). The specific problem under consideration is the following:

Min
x
f (x) =

∑
(i,j)∈BL0

aij xixj +
∑

(i,j)∈LF0

bij
xi

xj
+
∑
i∈C0

gi(xi)+ h(x)
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subject to (1)

fk(x) =
∑

(i,j)∈BLk
aijkxixj +

∑
(i,j)∈LFk

bijk
xi

xj

+
∑
i∈Ck

gi,k(xi)+ hk(x) ≤ 0 k ∈ K

x ∈ S ∩�0 ⊂ Rn

where aij , aijk, bij , bijk , are scalars withi ∈ I = {1,2, . . . , n}, j ∈ J =
{1,2, . . . , n}, andk ∈ K = {1,2, . . . , m}. BL0, BLk, LF0, LFk are(i, j)-index
sets, withi 6= j , that define the bilinear and linear fractional terms present in the
problem. The functionsh(x), hk(x) are convex, and twice continuously differen-
tiable.C0 andCk are index sets for the univariate twice continuously differentiable
concave functionsgi(xi), gi,k(xi). The setS ⊂ Rn is convex, and�0 ⊂ Rn is an
n-dimensional hyperrectangle defined in terms of the initial variable boundsxL,in

andxU,in:

�0 = {x ∈ Rn : 0≤ xL,in ≤ x ≤ xU,in, x
L,in
j > 0 if (i, j) ∈ LF0 ∪ LFk,

i ∈ I, j ∈ J, k ∈ K}
For future reference, the feasible region of problem (1) is denoted by D. Note that
a nonlinear equality constraint of the formfk(x) = 0 can be accommodated in (1)
through the representation by the inequalitiesfk(x) ≤ 0 and−fk(x) ≤ 0, provided
hk(x) is separable.

Given a positive relative toleranceεt , a deterministic global optimization algo-
rithm that belongs to the class of branch and bound algorithms (Horst and Tuy,
1993) is presented in this paper to determine a pointx∗ ∈ D such that,

ε(x) ≤ εt ∀x ∈ D (2)

where

ε(x) =


f (x∗)− f (x)
|f (x∗)| if f (x∗) 6= 0

−f (x) if f (x∗) = 0

The basic ideas in the proposed paper rely on the use of tight underestimating
functions, and the solution of acontraction subproblemfor variable bounds in order
to reduce the number of nodes in the branch and bound tree. Previous methods
reported in the literature that can solve (1) or particular instances of it include
the algorithms by Al-Khayyal and Falk (1983), Al-Khayyal et al. (1995), An-
droulakis et al. (1995), Cambrini et al. (1989), Epperly and Swaney (1996), Falk
and Palocsay (1992, 1994), Falk and Soland (1969), Konno et al. (1991), Pardalos
and Phillips (1991), Phillips and Rosen (1990), Quesada and Grossmann (1995),
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Rosen (1983), Ryoo and Sahinidis (1996), Sherali and Alameddine (1992), Sherali
and Tuncbilek (1995), Smith and Pantelides (1996), and Soland (1971); see also
Horst and Pardalos (1995).

The remainder of the paper is organized as follows. A convex underestimating
program for problem (1) is presented in the next section. In Section 3 we describe
a convexbounds-contraction subproblemthat can be used at a branch and bound
node to eliminate portions of the feasible region in which the objective function
will only take values above a known upper bound. A finite strategy for sequencing
the solution of contraction subproblems is proposed in Section 4, and a branch and
contract algorithm for continuous global optimization is presented in Section 5.
Section 6 contains five examples that illustrate the use of this algorithm.

2. A convex underestimating problem

In this section we present the proposed convex underestimating problem for the
global optimum solution of problem (1) that relies on the use of linear and nonlin-
ear underestimators, and that predicts valid lower bounds.

To obtain a lower bound,LB(�), for the global minimum of problem (1) over
D ∩ �, where� = {x ∈ Rn : xL ≤ x ≤ xU } ⊆ �0, the following problem is
proposed:

Min
(x,y,z)

f̂ (x, y, z) =
∑

(i,j)∈BL0

aij yij +
∑

(i,j)∈LF0

bij zij +
∑
i∈C0

ĝi (xi)+ h(x)

subject to

f̂k(x, y, z) =
∑

(i,j)∈BLk
aijkyij +

∑
(i,j)∈LFk

bijkzij

+
∑
i∈Ck

ĝi,k(xi)+ hk(x) ≤ 0 k ∈ K (3)

(x, y, z) ∈ T (�) ⊂ Rn × Rn1 × Rn2

x ∈ S ∩� ⊂ Rn, y ∈ Rn1+ , z ∈ Rn2+ ,

where the functions and sets are defined as follows:
(a) ĝi(xi) and ĝi,k(xi) are the convex envelopes for the univariate functions over

the domainxi ∈ [xLi , xUi ] (Falk and Soland, 1969):

ĝi(xi) = gi(xLi )+
(
gi(x

U
i )− gi(xLi )
xUi − xLi

)
(xi − xLi ) ≤ gi(xi) (4)

ĝi,k(xi) = gi,k(xLi )+
(
gi,k(x

U
i )− gi,k(xLi )
xUi − xLi

)
(xi − xLi ) ≤ gi,k(xi) (5)

whereĝi(xi) = gi(xi) atxi = xLi , andxi = xUi ; likewise, ĝi,k(xi) = gi,k(xi) at
xi = xLi , andxi = xUi .
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(b) y = {yij } is a vector of additional variables for relaxing the bilinear terms in
(1), and are used in the following inequalities which determine the convex and
concave envelopes of bilinear terms:

yij ≥ xLj xi + xLi xj − xLi xLj (i, j) ∈ BL+
yij ≥ xUj xi + xUi xj − xUi xUj (i, j) ∈ BL+ (6)

yij ≤ xLj xi + xUi xj − xUi xLj (i, j) ∈ BL−
yij ≤ xUj xi + xLi xj − xLi xUj (i, j) ∈ BL− (7)

where

BL+ = {(i, j) : (i, j) ∈ BL0 ∪ BLk, aij > 0 oraijk > 0, k ∈ K}
BL− = {(i, j) : (i, j) ∈ BL0 ∪ BLk, aij < 0 oraijk < 0, k ∈ K}

Note that the inequalities in (6) were first derived by McCormick (1976), and
along with the inequalities in (7) theoretically characterized by Al-Khayyal
and Falk (1983) and Al-Khayyal (1990).

(c) z = {zij } is a vector of additional variables for relaxing the linear fractional
terms in (1); these variables are used in the following inequalities:

zij ≥ xi

xLj
+ xUi

(
1

xj
− 1

xLj

)
(i, j) ∈ LF+

(8)

zij ≥ xi

xUj
+ xLi

(
1

xj
− 1

xUj

)
(i, j) ∈ LF+

zij ≥ 1

xj

xi +
√
xLi x

U
i√

xLi +
√
xUi


2

(i, j) ∈ LF+ (9)

zij ≤ 1

xLj x
U
j

(xUj xi − xLi xj + xLi xLj ) (i, j) ∈ LF−
(10)

zij ≤ 1

xLj x
U
j

(xLj xi − xUi xj + xUi xUj ) (i, j) ∈ LF−

where

LF+ = {(i, j) : (i, j) ∈ LF0 ∪ LFk, bij > 0 orbijk > 0, k ∈ K}
LF− = {(i, j) : (i, j) ∈ LF0 ∪ LFk, bij < 0 orbijk < 0, k ∈ K}



A BRANCH AND CONTRACT ALGORITHM 221

The inequalities in (8) and (9) are convex underestimators due to Quesada
and Grossmann (1993, 1995), and Zamora and Grossmann (1997, 1998), re-
spectively. The inequalities in (10) are proposed in this work, and have the
properties given below in Theorem 1.

(d) T (�) = {x, y, z) ∈ Rn × Rn1 × Rn2: (6)–(10) are satisfied withxL, xU as in
�}. The feasible region, and the solution of problem (3) are denoted byM(�),
and(x̂, ŷ, ẑ)�, respectively. We definethe approximation gapε(�) at a branch
and bound node as

ε(�) =


∞ if OUB= ∞
−LB(�) if OUB= 0
(OUB− LB(�))
|OUB| otherwise

where theoverall upper bound,OUB, is the value off (x) at the best available
feasible pointx ∈ D; if no feasible point is available, thenOUB= ∞.

THEOREM 1. The function

γ
lf

ij (xi, xj ) = Min

[
1

xLj x
U
j

(xUj xi − xLi xj + xLi xLj ),

1

xLj x
U
j

(xLj xi − xUi xj + xUi xUj )
]

is the concave envelope of the linear fractional termxi/xj over the rectangle�ij =
{(xi, xj ) : 0 ≤ xLi ≤ xi ≤ xUi , 0 < xLj ≤ xj ≤ xUj }. Furthermore,γ lfij (xi, xj ) =
xi/xj at xj = xLj , andxj = xUj

Proof.See the Appendix.

THEOREM 2. The program in (3) is a convex underestimating problem for prob-
lem (1) overD ∩�.

Proof.Convexity of the program in (3) follows from the convexity properties of
its objective function and constraints. The solution of problem (3) underestimates
the solution of problem (1) since, by construction,f̂ (x, y, z) ≤ f (x), andD∩� ⊂
M(�). 2

REMARKS
1. The underestimating problem in (3) is a linear program ifLF+ = ∅.
2. During the execution of the branch and bound algorithm that is proposed in

Section 5, problem (3) is solved initially overM(�0) (root node of the branch
and bound tree). If a better approximation is required,M(�0) is refined by par-
titioning �0 into two smaller hyperrectangles,�01 and�02, and two children
nodes are created with relaxed feasible regions given byM(�01) andM(�02).
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3. The problem given in (3) might be regarded as a basic underestimating pro-
gram for the general problem in (1). In some cases, however, it is possible
to develop additional convex estimators that might strengthen the underesti-
mating problem. See for instance the projections proposed by Quesada and
Grossmann (1995), the reformulation-linearization technique by Sherali and
Alameddine (1992), and the reformulation-convexification approach by Sherali
and Tuncbilek (1995).

THE SET OF BRANCHING VARIABLES

A set of branching variables, characterized by the index setBV (�) defined below,
is determined by considering the optimal solution(x̂, ŷ, ẑ)� of the underestimating
problem:

BV (�) = {i, j : |ŷij − x̂i x̂j | = ξ` or |ẑij − x̂i/x̂j | = ξ` or

gi(x̂i)− ĝi(x̂i ) = ξ` or gi,k(x̂i)− ĝi,k(x̂i) = ξ`,
for i ∈ I, j ∈ J, k ∈ K, ` ∈ L}

where, for a pre-specified number`n, L = {1,2, . . . , `n}, andξ1 is the magnitude
of the largest approximation error for a nonconvex term in problem (1) evaluated
at (x̂, ŷ, ẑ)�:

ξ1 = Max
i∈I,j∈J,k∈K

[|ŷij − x̂i x̂j |, |ẑij − x̂i/x̂j |, gi(x̂i)− ĝi (x̂i ), gi,k(x̂i)− ĝi,k(x̂i)]

Similarly, we defineξ` < ξ`−1, with ` ∈ L\{1}, as thè -th largest magnitude for
an approximation error; for instance,ξ2 < ξ1 is the second largest magnitude for
an approximation error. Note that in some cases it might be convenient to intro-
duce weights in the determination ofBV (�) in order to scale differences in the
approximation errors, or to induce preferential branching schemes. This might be
particularly useful in applications where specific information can be exploited by
imposing an order of precedence to the set of complicating variables.

3. A contraction subproblem for the reduction of the search region

We define theset of nonconvex or complicating variablesas the subset of variables
that appear in the nonconvex functions or terms in problem (1). The complicating
variables are characterized by the index setCVdefined as follows:

CV = {i, j : i ∈ C0 ∪ Ck or (i, j) ∈ BL0 ∪ BLk or

(i, j) ∈ LF0 ∪ LFk, i ∈ I, j ∈ J, k ∈ K}
To reduce the size of a hyperrectangle� = {x : xL ≤ x ≤ xU } ⊂ �0, and there-
fore to improve the quality of the convex relaxation at the corresponding branch and
bound node, we consider the following convex LP/NLPcontraction subproblemfor
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the complicating variables,xi, i ∈ CV (Maranas and Floudas 1997; Sourlas and
Manousiouthakis 1995; Sourlas et al. 1992; Zamora and Grossmann 1996):

Min or Max
(x,y,z)

xi

subject to

f̂ (x, y, z) ≤ OUB (11)

(x, y, z) ∈ M(�) ⊂ Rn × Rn1 × Rn2

The inequalityf̂ (x, y, z) ≤ OUB will be called the OUB constraint, and a
solution to problem (11) will be denoted as(x̃, ỹ, z̃)�. Theoptimization direction,
Min or Max, is selected depending upon which of the bounds,xLi or xUi , is to be
contracted. We define acontraction stepas the process of computing and updating
a bound,xLi or xUi , through the solution of problem (11). Theperformanceof a
contraction step is quantified by the parameter SP defined as the fraction of thexi-
domain that can be discarded because the objective function can only take values
above the currentOUB:

SP=


(
x̃i − xLi
xUi − xLi

)
if the optimization direction= Min(

xUi − x̃i
xUi − xLi

)
if the optimization direction= Max

wherex̃i is the minimum (maximum) value of the variablexi , obtained by solving
(11) with a Min (Max) direction. A contraction step is said to besuccessfulif
the step performance parameter takes a value higher than or equal to a minimum
prespecified value SPmin. The contraction step isunsuccessfulotherwise.

REMARKS
1. The value ofOUB is set to a large positive number in problem (11) if no feasi-

ble point for problem (1) is available when performing a contraction step. Also
note that, according to the problem statement given in Section 1, it suffices to
set the r.h.s. of theOUB constraint equal toOUB−εt |OUB| (if OUB 6= 0), or
−εt (if OUB = 0). To keep the presentation simple, this is left as shown in
(11).

2. The size of the relaxed feasible regionM(�) is reduced after a contraction
step if SP> 0 is obtained. Hence, the iterative solution of problem (11), with
contraction performed for different variables and directions, may significantly
reduce the size of the search region, and improve the quality of the under-
estimating problems decreasing, and in some cases eliminating, the need for
branching.

3. Infeasibility of problem (11) indicates that the feasible region of the convex
underestimating problem has become empty, or that the relaxed objective func-
tion can not take values below the currentOUB. In either case, the branch and
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bound node can be safely discarded, since there is no feasible point for problem
(1) overD ∩� with an objective function value belowOUB.

4. Although the contraction subproblem is used in this work to contract only the
bounds of the complicating variables, it can also be used to contract the bounds
of any of the otherxi, yij , or zij variables by applying the objective function in
(11) to these variables.

A LOWER BOUND ESTIMATE OVER THE REDUCED FEASIBLE REGION

A lower boundLB(�) for the global optimum solution of problem (1) overD ∩�
can be computed by solving the lower bounding problem (3). If a successful reduc-
tion of the hyperrectangle� is achieved through the performance of a contraction
step for a variablexi , then the convex underestimating problem can be resolved
over the, now smaller, regionM(�) to compute a potentially tighter value for
LB(�). A drawback of this strategy is that it demands extra computational effort
without necessarily providing additional useful information. Therefore, we propose
to make use of Theorems 3 and 4 given below to try to determine an improved lower
bound without additional computational cost.

THEOREM 3. Consider the following alternative formulation of problem (11) for
the contraction of the lower boundxLi :

Min
(x,y,z)

xi

subject to

G1(x, y, z) = f̂ (x, y, z) −OUB≤ 0 (12)

Gk(x, y, z) ≤ 0 k = 2,3, . . . , pc
(x, y, z) ∈ Rn × Rn1 × Rn2

in which the constraints that defineM(�) in (11) have been arranged to have:

M(�) = {(x, y, z) ∈ Rn × Rn1 × Rn2 : Gk(x, y, z) ≤ 0, k = 2,3, . . . , pc}
Assume that problem (12) has a solution(x̃, ỹ, z̃)� that satisfies the Karush–Kuhn–
Tucker conditions with optimal Lagrange multipliers given byλ̃ = (λ̃1, λ̃2,

λ̃3, . . . , λ̃pc)
T . Let λ̃1 be the Lagrange multiplier associated with the OUB con-

straint, G1(x, y, z). Then, the following lower bound for̂f (x, y, z) is valid if
λ̃1 > 0:

f̂ (x, y, z) ≥ OUB− (xUi − x̃i )/λ̃1 (13)

Proof.See the Appendix.

COROLLARY 1. Assume that a contraction step is performed, and the value of a
variable xi , i ∈ CV , is minimized by solving problem (12). Then, the corresponding
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branch and bound node can be discarded if a solution(x̃, ỹ, z̃)� with x̃i = xUi , and
a strictly positive Lagrange multiplier for the contraction constraint are obtained.

Proof.This result is a direct consequence of Theorem 3.

THEOREM 4. Consider the following alternative formulation of problem (11) for
the contraction of the upper boundxUi :

Min
(x,y,z)

−xi
subject to

G1(x, y, z) = f̂ (x, y, z) −OUB≤ 0 (14)

Gk(x, y, z) ≤ 0 k = 2,3, . . . , pc
(x, y, z) ∈ Rn × Rn1 × Rn2

in which the constraints that defineM(�) in (11) have been arranged to have:

M(�) = {(x, y, z) ∈ Rn × Rn1 × Rn2 : Gk(x, y, z) ≤ 0, k = 2,3, . . . , pc}
Assume that problem (14) has a solution(x̃, ỹ, z̃)� that satisfies the Karush–Kuhn–
Tucker conditions with optimal Lagrange multipliers given byλ̃ = (λ̃1, λ̃2,

λ̃3, . . . , λ̃pc)
T . Let λ̃1 be the Lagrange multiplier associated with the OUB con-

straint, G1(x, y, z). Then, the following lower bound for̂f (x, y, z) is valid if
λ̃1 > 0:

f̂ (x, y, z) = OUB− (x̃i − xLi )/λ̃1 (15)

Proof.Similar to the proof of Theorem 3.

COROLLARY 2. Assume that a contraction step is performed, and the value of a
variablexi, i ∈ CV is maximized by solving problem (14). Then, the corresponding
branch and bound node can be discarded if a solution(x̃, ỹ, z̃)� with x̃i = xLi , and
a strictly positive Lagrange multiplier for the contraction constraint are obtained.

Proof.This result is a direct consequence of Theorem 4.

ADDITIONAL MULTIPLIER BASED BOUNDING INEQUALITIES

The following bounding inequalities for the variables involved in problem (1) can
also be obtained from the solution of contraction subproblems for a variablexi .

xj ≤ xLj + (xUi − xLi )/λ̃j (16)



226 J.M. ZAMORA AND I.E. GROSSMANN

for the case when the constraintxLj − xj ≤ 0, j ∈ J , is active at the solution of the
contraction step, and

xj ≥ xUj − (xUi − xLi )/λ̃j (17)

for the case when the constraintxj − xUj ≤ 0, j ∈ J , is active. In both cases,

a Lagrange multiplier̃λj > 0 is required for the application of the bounding
inequalities.

REMARK. The inequalities in (16) and (17) are analogous to some of the in-
equalities presented by Ryoo and Sahinidis (1995, 1996). Note, however, that the
inequalities developed by Ryoo and Sahinidis involve the solution of the convex
underestimating program for the nonconvex problem as opposed to the solution of
the contraction subproblem that is utilized in this paper.

4. The contraction operation

As mentioned before, the solution of the contraction subproblem, for different
variables and directions, may significantly reduce the size of the search region, and
improve the quality of the underestimating problems decreasing, and in some cases,
eliminating the need for branching. A strategy for sequencing the contraction steps
at a given branch and bound node is presented in this section within acontraction
operationthat has finite termination.

THE FOCAL POINT

We define thefocal pointat a branch and bound node as the pointxb ∈ Rn that pro-
vides the best known upper bound for problem (1) over the corresponding subset,
D ∩ �, of the feasible region. If no such point is available, then the focal point is
given by thex component of the solution (x̂, ŷ, ẑ)� of the convex underestimating
problem overM(�).

Given a positive parameterεx, a focal point is said to beεx-close to the boundary
atxLi > 0 if xbi ≤ xLi (1+ εx); it is εx-close toxLi = 0 if xbi ≤ εx . Similarly, a focal
point is said to beεx-close to the boundary atxUi > 0 if xbi ≥ xUi (1− εx); it is
εx-close toxUi = 0 if xbi = 0.

The lower focal distance, 1f,L

i (�), i ∈ CV , is the relative distance from the
focal point to the boundary atxLi defined as follows:

1
f,L

i (�) = xbi − xLi
x
U,in
i − xL,ini

Likewise, we define theupper focal distance, 1f,U

i (�), i ∈ CV , as

1
f,U

i (�) = xUi − xbi
x
U,in
i − xL,ini
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In this way,1f,L

i (�) (1f,U

i (�)) represents the fraction of the initialxi-domain that
remains on the left (right) of the focal point at the current node. Depending on the
position of the focal point or the outcome of a contraction step, a focal distance can
be labeled either asmarkedor unmarked.

Contraction operation

Step C1. Specify the minimum value,SPmin, for a successful contraction step.
Specify the minimum value,SPr , for the application offeasibility based
reduction techniques(Step C8).
Specify the parameterεx, which determines theεx-closeness property.
Specify the maximum number of contraction steps to be performed,
NCmax.
Specify the maximum number for unsuccessful contraction steps,
NUCmax.
Specify the index setBLUE0 ⊆ CV that determines the subset of com-
plicating variables over which contraction is to be performed (contrac-
tion variables).
Initialize the control setsBLUE := BLUE0, andRED := ∅.
Specify the maximum fraction ofcontraction variables, FCV , allowed
in theREDset.
Initialize counters NC= 0, NUC= 0.

Step C2. Fori ∈ BLUE, Compute1f,L

i (�), and1f,U

i (�). Label all these focal
distances as unmarked.
If xb is εx-close toxLi , then mark1f,L

i (�). If xb is εx-close toxUi , then
mark1f,U

i (�).
Step C3. Determine

1f
max(�) = Max

i∈BLUE
[1f,L

i (�),1
f,U

i (�)]
for 1f,L

i (�),1
f,U

i (�), unmarked

Then, select a complicating variablext , with t ∈ BLUE, such that

1
f,L
t (�) is unmarked and1f,L

t (�) = 1f
max(�)

or

1
f,U
t (�) is unmarked and1f,U

t (�) = 1f
max(�)

Step C4. If1f,L
t (�) is unmarked and1f,L

t (�) = 1f
max(�) perform a contraction

step with a Min direction to contractxLt . Otherwise, perform a con-
traction step with a Max direction to contractxUt . SetNC := NC +
1.
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Step C5. If the contraction subproblem in Step C4 is feasible, then:
Determine SP.
If xLt was contracted andSP < SPmin, then mark1f,L

t (�), and set
NUC := NUC + 1.
If xLt was contracted andxbt < xLt , then setxbt := xLt .
If xUt was contracted andSP < SPmin, then mark1f,U

t (�), and set
NUC := NUC + 1.
If xUt was contracted andxbt > x

U
t , then setxbt := xUt .

Use the inequality given in (13) or (15) to try to tighten the value of the
lower boundLB(�).
Computeε(�).

Step C6. If the contraction subproblem in Step C4 is infeasible orε(�) ≤ εt ,
then terminate thecontraction operation.

Step C7. If possible, use the inequalities in (16) and (17) to try to contract the
bounds of thex variables.

Step C8. (Optional). IfSP ≥ SPr , utilize feasibility based reduction techniques
developed for problem (1) to try to contract the bounds of thex vari-
ables. If crossing of these bounds occurs at any point, then terminate
thecontraction operation.

Step C9. LetMVL ⊆ BLUE be the index subset that characterizes the variables
whose lower bound were contracted during the execution of Steps C4,
C7, or C8. Similarly, letMVU ⊆ BLUE be the index subset that char-
acterizes the variables whose upper bound were contracted during the
execution of Steps C4, C7, or C8.
For i ∈ MVL, mark1f,L

i (�) if xb is εx-close toxLi , else recompute
1
f,L

i (�).
For i ∈ MVU , mark1f,U

i (�) if xb is εx-close toxUi , else recompute
1
f,U

i (�).
For all i ∈ MVL ∪ MVU , with 1f,L

i (�) and1f,U

i (�) marked, set
BLUE= BLUE\{i}, andRED= RED∪ {i}.

Step C10. Terminate thecontraction operationif any of the following conditions
is met: (i) |RED| ≥ FCV |BLUE0|; (ii) NC = NCmax; (iii) NUC =
NUCmax. Otherwise, return to Step C3.

REMARK. By feasibility based reduction techniques(Step C8) we mean finite
contraction techniques that manipulate, and reduce problem constraints deriving
univariate bounding functions that can be used iteratively to eliminate portions
of the domain in which the nonconvex problem is infeasible. These techniques
exploit convexity, concavity, or monotonicity properties present in a problem, and
frequently utilize monotonicity principles, or interval arithmetic (see e.g. Amarger
et al. 1992; Hamed and McCormick 1993; Hansen et al. 1989 1991; Lodwick 1992;
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Ryoo and Sahinidis 1995; Sherali and Tuncbilek 1995; Zamora and Grossmann
1998).

5. The branch and contract algorithm for continuous global optimization

Initialization

SetOUB := ∞ andxb := (xL,in + xU,in)/2.

Phase 1 (Heuristic NLP search, optional)

Attempt to solve problem (1) starting from a small number of initial points. If
feasible points are located, then use the best found local minimum to define the
initial incumbent solutionx∗, and updateOUB. Set the focal pointxb := x∗.

Phase 2 (Global NLP search)

Step 1. Specify the parameter`n for the determination of the set of branching
variables.
Specify,Fb, the minimum fraction of domain to be assigned to a children
node.
Specify the maximum approximation gap,Fε, under whichthe contrac-
tion operationis to be performed.
SetLB(�0) := −∞.

Step 2. (Optional). Attempt to reduce�0, and obtain a finite lower bound for
f̂ (x, y, z) with (13) or (15) by performingthe contraction operationwith
BLUE0 := CV andFCV = 1. If termination occurs at Step C10, then
continue to Step 3. On the other hand, if termination occurs at Step C6 or
C8, then Stop. IfOUB = ∞, then problem (1) is infeasible. Otherwise,
x∗ is a global minimizer.

Step 3. Initialize the list of open nodesON = {0, LB(�0)}.
Step 4. If ON = ∅, then stop. IfOUB = ∞, then problem (1) is infeasible.

Otherwise,x∗ is a global minimizer.
Step 5. Determine the overall lower boundOLB:

OLB= Min
r
[LB(�r)] for (r, LB(�r)) ∈ ON

Compute theoverall approximation gapε:

ε =



∞ if OUB= ∞

−OLB if OUB= 0

(OUB−OLB)

|OUB| otherwise
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If ε ≤ εt , then stop. In this case,x∗ is a global minimizer of problem (1).
Step 6. Select a nodeswith LB(�s) = OLBand�s = {x ∈ Rn : xL ≤ x ≤ xU }.

SetON := ON\{s, LB(�s)}.
Step 7. (Optional). Applyfeasibility based reduction techniquesat the selected

node to try to contract the bounds of the variables. If crossing of these
bounds occurs at any point, then go to Step 4.

Step 8. ComputeLB(�s) by solving the lower bounding problem (3) overM(�s).
If the problem is infeasible, then go to Step 4. Else, calculateε(�s).
If ε(�s) ≤ εt , then go to Step 4. Else, determine the set of branching
variablesBV, and setxb := x̂.

Step 9. SetUB(�s) := ∞. Starting fromx̂, attempt to solve problem (1) over
D ∩�s with a local NLP optimizer. If no feasible point is found, then go
to Step 11. Else, if a feasible solutionxs with an upper boundUB(�s) is
found, then setxb := xs .

Step 10. IfUB(�s) < OUB, then (i) Setx∗ := xs ; (ii) UpdateOUB := UB(�s);
(iii) Delete fromON all nodesr such thatLB(�r) ≥ OUB; (iv) Calculate
ε(�s), and (v) Ifε(�s) ≤ εt , then go to Step 4.

Step 11. Ifε(�s) ≤ Fε, then execute thecontraction operationat the current node.
If the contraction operationterminates at Step C6 or C8, then go to Step
4.

Step 12. Select a variablexb, with b ∈ BV (�), such that

xUb − xLb
x
U,in
b − xL,inb

≥ xUi − xLi
x
U,in
i − xL,ini

∀i ∈ BV (�)

Create two new nodes,s1 and s2. SetLB(�s1) := LB(�s), LB(�s2) :=
LB(�s), andON := ON ∪ {(s1, LB(�s1)), (s2, LB(�s2))}.�s1 and�s2
are defined as follows:

If Min

[
xbb − xLb
xUb − xLb

,
xUb − xbb
xUb − xLb

]
≥ Fb

then�s1 := �s ∩ {x ∈ Rn : xb ≤ xbb } and�s2 := �s ∩ {x ∈ Rn :
xb ≥ xbb }. Otherwise�s1 := �s ∩ {x ∈ Rn : xb ≤ (xLb + xUb )/2} and
�s2 := �s ∩ {x ∈ Rn : xb ≥ (xLb + xUb )/2}. Go to Step 5.

REMARKS
1. Phase 1, and Steps 2 and 7 above are optional in the sense that their elimination

does not compromise the convergence properties of the algorithm.
2. Thecontraction operationis only executed in Step 11 if the approximation

gap at the branch and bound node takes a value less than or equal to the value
of the control parameterFε. This measure prevents wasteful computations that
may occur when contraction steps are performed under very poor convex relax-
ations. In other words, the algorithm will selectively perform thecontraction
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operationin branches of the branch and bound tree in which a relatively good
convex approximation has already been obtained. The algorithm goes to a
noncontraction mode in other sections of the tree allowing the execution of
more branching to improve the quality of the approximation.

3. The parameterFb in the algorithm takes always a value greater than 0.05. As
indicated in Step 12, branching occurs at the focal point if the smallest of the
children nodes gets at least a fractionFb of thexb-domain of the father node.
Otherwise the children nodes are created by bisection.

4. The convergence of thebranch and contract algorithmis guaranteed by the
following properties (see also Theorem IV.3 in Horst and Tuy 1993):
(a) Any partition element inON can be further refined at any point in the

search.
(b) When evaluated at the points determined by the bounds of the complicat-

ing variables, the bounding estimators in (4)–(10) are exact for each of
the corresponding nonconvex terms in problem (1). Therefore, the lower
bound predicted by problem (3) over the limit set of a decreasing sequence
of partition sets, created by subdividing the subspace of complicating vari-
ables, is exactly the minimum off (x) over the limit set.

(c) The node selection rule of the algorithm is bound improving.
(d) Thecontraction operationand thefeasibility based reduction techniques

used in the algorithm are finite.
5. The extension of the proposedbranch and contract algorithmfor MINLP

problems can be found in Zamora (1997).

6. Illustrative examples

Five global optimization problems are solved in this section to illustrate the perfor-
mance of some of the algorithmic strategies embedded in the branch and contract
algorithm presented in the previous section. Strategies S1 to S4 in Table 1 are
determined by the inclusion or exclusion of each of the four optional features of the
general algorithm. Note thatfeasibility based reduction strategies(Step 7, and Step
C8) are only included in the strategies S2, and S4. The heuristic local search (Phase
1), and the initial contraction of the feasible region (Step 2) are only executed in the
strategies S1 and S2. The strategy S5, introduced for comparison in Examples 1 and
5, excludes the four optional features of the branch and contract algorithm, as well
as thecontraction operationof Step 11. Therefore, S5 represents a simple version
of a branch and bound algorithm which excludes bothcontractionand feasibility
based reduction techniques.

For the sake of illustration, the solution strategies described above are applied
to the Examples in the following manner:
(i) S1, S2 and S5 are applied to Example 1.

(ii) S1 is applied to Examples 2 and 3.
(iii) S3 and S4 are applied to Example 4.
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Table 1. Algorithmic strategies applied to the illustrative exam-
ples.

Strategy Phase 1 Step 2 Step 7 Step C8 Step 11

S1 ∗ ∗ ∗
S2 ∗ ∗ ∗ ∗ ∗
S3 ∗
S4 ∗ ∗ ∗
S5

(iv) S1, S3, and S5 are applied to Example 5.
In all cases the solution is required to satisfy anεt = 0.5×10−6 andBLUE0 :=

CV is specified. Where needed, the following parameters are used:`n = 1, Fb =
0.20,Fε = 5.0, FCV = 0.50,SPmin = 0.20,SPr = 0.01, εx = 0.5e−8, NCmax =
1000, andNUCmax = 1000. Large values forNCmax andNUCmax are set to
force termination with the criterion|RED| ≥ FCV |BLUE| in Step C10 of the
contraction operation. A summary of results is given later in Table 7. All computa-
tions were performed on an IBM RS-6000/530 workstation with a non-optimized
GAMS/MINOS (Brooke et al. 1992) implementation of the algorithm.

EXAMPLE 1.

Minimize
x

f (x) = x2
1 + 2x2

2 − 50x1 − 80x2 + 250

subject to

x1x2+ x1 − 50= 0

x ∈ �0

�0 = {x ∈ R2 : 0≤ x1 ≤ 20,0 ≤ x2 ≤ 20}

(E1.1)

The convex underestimating problem is given by

Minimize
x,y12

f̂ (x) = x2
1 + 2x2

2 − 50x1 − 80x2 + 250

subject to

y12+ x1− 50= 0

y12 ≥ xL2 x1+ xL1 x2 − xL1 xL2
y12 ≥ xU2 x1 + xU1 x2− xU1 xU2
y12 ≤ xL2 x1+ xU1 x2 − xU1 xL2
y12 ≤ xU2 x1 + xL1 x2 − xL1 xU2
x ∈ � ⊆ �0, � = {x ∈ R2 : xL ≤ x ≤ xU },
y12 ∈ R1+

(E1.2)
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Table 2. Computational results for Example 1, Strategy S1,
Step 2.

Iter Dir Var SP LB(�0) ε(�0)

1 min x2 0.26335 −1294.379 0.94021

2 max x1 0.60109 −1294.379 0.94021

3 min x2 0.47124 −793.5140 0.18944

4 min x2 0.30995 −782.7225 0.17326

5 max x1 0.59889 −782.7225 0.17326

6 min x2 0.49271 −678.4248 0.16927e−1

7 min x1 0.77641 −678.4248 0.16927e−1

8 max x2 0.43287 −669.2815 0.32221e−2

9 min x2 0.85800 −668.0890 0.14346e−2

10 max x1 0.86047 −667.7139 0.87235e−3

11 min x2 0.46009 −667.2656 0.20033e−3

12 max x2 0.52059 −667.1960 0.96043e−4

13 max x2 0.28894 −667.1585 0.39809e−4

14 min x2 0.26927 −667.1457 0.20619e−4

15 min x1 0.72352 −667.1457 0.20619e−4

16 min x2 0.34435 −667.1353 0.50298e−5

17 max x2 0.60699 −667.1327 0.11226e−5

18 max x1 0.84228 −667.1327 0.11226e−5

19 min x2 0.51920 −667.1321 0.20781e−6

The contraction subproblem in this case is

Min or Max
x,y12

xi

subject to

f̂ (x) = x2
1 + 2x2

2 − 50x1 − 80x2 + 250≤ OUB

y12+ x1− 50= 0

y12 ≥ xL2 x1+ xL1 x2 − xL1 xL2
y12 ≥ xU2 x1 + xU1 x2− xU1 xU2
y12 ≤ xL2 x1+ xU1 x2 − xU1 xL2
y12 ≤ xU2 x1 + xL1 x2 − xL1 xU2
x ∈ � ⊆ �0, � = {x ∈ R2 : xL ≤ x ≤ xU },
y12 ∈ R1+, i ∈ CV = {1,2}

(E1.3)
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Strategy S1

Phase 1

The following two solutions are found for the nonconvex problem in (E1.1):x1 =
(2.56028691,18.5290613)andx2 = (20.0000000,1.50000000), with f (x1) =
−667.131955 andf (x2) = −465.500000, respectively. Thus, we setOUB :=
−667.131955, andx∗ = xb = (2.56028691,18.5290613).

Phase 2

Table 2 shows the details of the execution of thecontraction operationin Step 2
of the algorithm; each iteration represents the execution of a contraction step with
the optimization direction, and objective function variable given on columns 2 and
3, respectively. As can be seen on the fourth column of Table 2, the fraction of
the domain that is eliminated in this example after the execution of a contraction
step ranges from 0.26335 to 0.86047. The lower bound obtained forf̂ (x) by using
the results presented in Theorems 3 and 4, is shown on the fifth column, and the
respective approximation gapε(�0) is given on the last column. The execution
of the contraction operationis terminated at Step C6 after 19 iterations, when
the required precision (εt = 0.5e−6) for the global optimum is achieved. Thus,
x∗ = (2.56028691,18.5290613)is proved to be a global minimizer with an opti-
mal objective function valuef (x∗) = −667.131955. Note that for the solution of
this problem no underestimating problem is solved, and no branching is required.

EXAMPLE 1 (continued)

Strategy S2

The following four bounding inequalities forx1 andx2 can be easily developed
from the only constraint in (E1.1):

x1 ≥ 50

xU2 + 1

x1 ≤ 50

xL2 + 1

x2 ≥ 50

xU1
− 1

x2 ≤ 50

xL1
− 1

(E1.4)

These inequalities are used recursively in the optional step, Step C8, of thecon-
traction operationto further tighten the bounds of the problem variables after a
new contracted bound is obtained by the execution of a contraction step (Step C4).
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Table 3. Computational results for Example 1, Strategy S2,
Step 2.

Iter Dir Var SP LB(�0) ε(�0)

1 min x2 0.26335 −1294.379 0.94021

2 min x2 0.47124 −793.5140 0.18944

3 min x2 0.55312 −688.0112 0.31297e−1

4 min x2 0.36768 −673.1595 0.90350e−2

5 max x2 0.46521 −669.0161 0.28243e−2

6 min x2 0.41124 −667.7574 0.93752e−3

7 max x2 0.43863 −667.3335 0.30204e−3

8 min x2 0.42471 −667.1980 0.98962e−4

9 max x2 0.43127 −667.1534 0.32143e−4

10 min x2 0.42844 −667.1390 0.10488e−4

11 max x2 0.42940 −667.1342 0.34142e−5

12 min x2 0.42931 −667.1327 0.11126e−5

13 max x2 0.42905 −667.1322 0.36244e−6

This feasibility based reductionof Step C8 is stopped when the largest reduction
of the bounds in the recursive strategy goes below a pre-specified small tolerance.

The execution of the Phase 1 of the algorithm is similar to the one shown for
Strategy S1. Table 3 shows the results obtained for the global optimization of Ex-
ample 1 when Step 2 in Strategy S2 is applied. The number of iterations required to
prove thatx∗ = (2.56028691,18.5290613)is a global optimum decreases in this
case from 19 (Strategy S1) to 13. A very interesting result is that the contraction
steps are only performed for the variablex2. Such areduced space searchis more
effective, and arises here due to the combination ofcontraction and feasibility
based reduction.

Strategy S5

To achieve the specified precision for the solution of Example 1, the solution strat-
egy S5 requires the analysis of 39 branch and bound nodes. The upper bounding
step of the algorithm is performed in 22 of these nodes.
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Table 4. Computational results for Example 2, Strategy
S1, Step 2.

Iter Dir Var SP LB(�0) ε(�0)

1 max x3 0.27273 −800 1.00000

2 max x10 0.38889 −800 1.00000

3 max x3 1.00000 −400 0.00000

EXAMPLE 2 (Haverly 1978).

Minimize
x

f (x) = 6x1 + 16x2 − 9x5 + 10x6 − 15x9

subject to
x1+ x2− x3− x4 = 0

x3− x5+ x7 = 0

x4+ x8− x9 = 0

−x6+ x7+ x8 = 0

−2.5x5 + 2x7 + x3x10 ≤ 0

2x8− 1.5x9 + x4x10 ≤ 0

3x1 + x2 − x3x10− x4x10 = 0
x ∈ �0

where

�0 = {x ∈ R10 :0≤ x1 ≤ 300, 0≤ x2 ≤ 300,0 ≤ x3 ≤ 100,0 ≤ x4 ≤ 200,

0≤ x5 ≤ 100, 0≤ x6 ≤ 300,0 ≤ x7 ≤ 100,0 ≤ x8 ≤ 200,

0≤ x9 ≤ 200, 1≤ x10 ≤ 3}

Strategy S1

Phase 1

The following solution is found:x1 = {0,100,0,100,0,100,0,100,200,1}, with
f (x1) = −400. Thus, we setOUB := −400 andx∗ = xb = x1.

Phase 2

Table 4 shows the results obtained by executing thecontraction operationin Step
2 of the algorithm, which only requires three iterations to prove thatx∗ = {0,100,
0,100,0,100,0,100,200,1} is a global minimizer with an optimal objective func-
tion valuef (x∗) = −400. Note that in the third iterationSP = 1 is obtained when
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xU3 is contracted to a valuexU3 = xL3 (see also the Corollary 2). Neither the solution
of underestimating problems, nor branching are required to solve this problem.

EXAMPLE 3 (Stephanopoulos and Westerberg 1975).

Minimize
x

f (x) = x0.6
1 + x0.6

2 + x0.4
3 − 4x3 + 2x4 + 5x5 − x6

subject to
−3x1+ x2− 3x4 = 0

−2x2+ x3− 2x5 = 0

4x4− x6 = 0

x1+ 2x4 ≤ 4

x2+ x5 ≤ 4

x3+ x6 ≤ 6
x ∈ �0

(E3.1)

where

�0 = {x ∈ R6 :0≤ x1 ≤ 3, 0≤ x2 ≤ 4,0≤ x3 ≤ 4,0 ≤ x4 ≤ 2,

0≤ x5 ≤ 2, 0≤ x6 ≤ 6}

Strategy S1

Phase 1

The following solution is found for the problem in (E3.1):x1 = {0.166666667,
2.00000000,4.00000000,0.500000000,0.000000000,2.00000000}, with f (x1) =
−13.4019036. Thus, we setOUB := −13.4019036 andx∗ = xb = x1.

Phase 2

The execution of thecontraction operationin Step 2 proves that the pointx1 is a
global minimizer. Only 11 contraction steps are performed, and an average SP=
0.857 is obtained. In other words, thecontraction operationdiscards in this case
an average 85.7% of the box domain after the execution of each contraction step.

EXAMPLE 4 (Falk and Palocsay 1992)

Maximize
x

f1(x) = 37x1 + 73x2 + 13

13x1 + 13x2 + 13
+ 63x1 − 18x2 + 39

13x1 + 26x2 + 13

subject to

5x1 − 3x2 = 3

1.5≤ x1 ≤ 3

(E4.1)
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Besides illustrating the application of Strategies S3 and S4, this example illustrates
the effect of different formulations for the solution of a given problem. The problem
reformulation 4A that is given below trades the two complicating variables problem
in (E4.1) for a problem with four complicating variables, increasing the dimension
of the branch and bound search space from 2 to 4. The reformulation 4A also
changes the complicating variables of the original problem,(x1, x2), for a new
group of complicating variables given by(x3, x4, x5, x6). On the other hand, the
second problem reformulation that is presented, reformulation 4B, changes neither
the group of complicating variables, nor the dimension of the search space. As will
be seen, keeping the dimension of the search space small allows one to expedite
the solution of the problem in (E4.1).

Problem reformulation 4A

Consider the solution of the following formulation to solve the problem in (E4.1):

Minimize
x

f (x) = −x3

x4
− x5

x6
subject to

5x1− 3x2 − 3 = 0

x3− 37x1 − 73x2 − 13 = 0

x4− 13x1 − 13x2 − 13 = 0

x5− 63x1 + 18x2 − 39 = 0

x6− 13x1 − 26x2 − 13 = 0

x ∈ �0

(E4.2)

where

�0 = {x ∈ R6 :1.5≤ x1 ≤ 3, 1.5≤ x2 ≤ 4,178≤ x3 ≤ 416,

52≤ x4 ≤ 104, 61.5≤ x5 ≤ 201,71.5≤ x6 ≤ 156}
Note that the bounds that define�0 are easily computed from the constraints in
(E4.2).

Strategy S3

Tables 5, and 6 contain the results obtained for the solution of Example 4 by apply-
ing Strategy S3 to the problem formulation given in (E4.2). An iteration in Table 5
represents the analysis of a node of the branch and bound tree. Table 6 presents the
node by node computational results for this problem. The valueLB(�f ) on the
third column of this Table corresponds to the tightest lower bound obtained while
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Table 5. Overall computational results for the solution of Ex-
ample 4 through the formulation in (E4.2), Strategy S3, Steps
3–12.

Iter Node OLB OUB ε(%) |ON|
1 0 −6.45848 −5.00000 29.16958 2

2 1 −6.45848 −5.00000 29.16958 3

3 2 −5.36682 −5.00000 7.33631 4

4 3 −5.36682 −5.00000 7.33631 3

5 4 −5.30039 −5.00000 6.00776 2

6 5 −5.30039 −5.00000 6.00776 1

7 6 −5.03243 −5.00000 0.64856 2

8 7 −5.03243 −5.00000 0.64856 1

9 8 −5.00000 −5.00000 0.00000 0

Table 6. Node by node computational results for the solution of Example 4 through the
formulation in (E4.2), Strategy S3, Steps 3–12.

Node Father LB(�f ) LB(�) UB(�) Contraction Branching

steps variable

0 – – −6.45848 −5.00000 6 x4

1 0 −6.45848 −5.54017 −4.96284 8 x3

2 0 −6.45848 −5.36956 −5.00000 7 x4

3 1 −5.54017 −5.08686 −4.94463 4 –

4 1 −5.54017 −5.09959 −4.96027 4 –

5 2 −5.36956 −5.04811 −4.98487 5 –

6 2 −5.36956 −5.05032 −5.00000 9 x4

7 6 −5.05032 −4.99765 infeasible – –

8 6 −5.05032 −5.00388 −5.00000 5 –

analyzing the father node. Therefore,LB(�f ) is the lower bound assigned to the
children nodes when the branching step, Step 12, is performed, and the children
nodes are created. Nine nodes are analyzed, and a total of 48 contraction steps
are executed to prove that the pointx∗ = {3,4,416,104,156,156} is a global
minimizer/maximizer for the problem in (E4.2)/(E4.1).
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Problem reformulation 4B

Consider now the solution of the following alternative formulation for Example 4:

Minimize
x

f (x) = −z3,4− z5,6

subject to
5x1 − 3x2 − 3= 0

z3,4 ≤ 37x1 + 73x2 + 13

13x1 + 13x2 + 13

z5,6 ≤ 63x1 − 18x2 + 39

13x1 + 26x2 + 13

x ∈ �0

(E4.3)

where

�0 = {x ∈ R2 : 1.5≤ x1 ≤ 3, 1.5≤ x2 ≤ 4}
Since the numerators and denominators in the linear fractional constraints in

(E4.3) are all positive, and only upper bounding inequalities are required forz3,4

andz5,6, a special convex underestimator problem that needs the introduction of no
extra problem variables can be developed in this case. Bounding inequalities for
z3,4 are obtained by using the inequalities given in (10) with

xi = 37x1 + 73x2 + 13

xj = 13x1 + 13x2 + 13

and

xLi = 37xL1 + 73xL2 + 13; xUi = 37xU1 + 73xU2 + 13;
xLj = 13xL1 + 13xL2 + 13; xUj = 13xU1 + 13xU2 + 13;

Similar bounding inequalities are obtained forz5,6 by using

xi = 63x1 − 18x2 + 39

xj = 13x1 + 26x2 + 13

and

xLi = 63xL1 − 18xU2 + 39; xLj = 63xU1 − 18xL2 + 39;
xLj = 13xL1 + 26xL2 + 13; xUj = 13xU1 + 26xU2 + 13;
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Table 7. Summary of results from the applica-
tion of the branch and contract algorithm to the
Illustrative Examples.

Illustrative example Nodes Contraction

steps

Example 1

S1 1 19

S2 1 13

S5 39 –

Example 2

S1 1 3

Example 3

S1 1 11

Example 4

(E4.2), S3 9 48

(E4.3), S3 9 31

(E4.3), S4 7 15

Example 5

S1 11 82

S3 11 61

S5 157 –

Strategy S3

The results for the solution of Example 4 by applying the Strategy S3 to the prob-
lem formulation given in (E4.3) are included in Table 7. Note that, although nine
branch and bound nodes are analyzed, the number of contraction steps decreases
from 48 (reformulation 4A) to 31.

Strategy S4

For the application of thefeasibility based reductionsteps of the algorithm (Steps 7
and C8), the following bounding inequalities are obtained from the linear equation
in (E4.3):

x1 ≥ 3xL2 + 3

5

x1 ≤ 3xU2 + 3

5
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x2 ≥ 5xL1 − 3

3

x2 ≤ 5xU1 − 3

3

Phase 2

The results obtained for the solution of Example 4 by applying Strategy S4 to the
problem formulation given in (E4.3) are included in Table 7. In this case, 7 nodes
are analyzed, and only 15 contraction steps are needed to achieve global optimality.

EXAMPLE 5.

Minimize
x

f (x) = −71x1 − 60x2 + 65x3 + 57x4 − 30x5

−65x1x4 − 56x1x3− 85x2x3 − 87x2x5+ 142
subject to

2.5x1 − 1.8x2 + 5x4 − 5.6x5 ≤ 296

x2+ 4.6x4 − 5x5 + 1.5x3x4+ 2x1x2 ≤ 250

−3.5x1 + 2.3x2 + 4x3 − 10x5 − 6x2x4 + 2.2x3x5 ≤ 192.5

1.9x2 − 5x3 + 1.4x5 + 2.9x2x3 − 1.5x3x5 ≤ 134.5

7.5x1 + 5.8x3 − 3x5 + 1.5x1x2− 3x4x5 = 55

−3.5x2 − 10x3 + 10.5x5 − 3.5x1x2 ≤ 32

3.7x2 − 7x3 + 3.8x4 − 5x5 + 3.5x1x2− 6x2x4 = 75

−7x2+ 2x3 − 2x4 + 4x5 ≤ 20

x1+ x3 − x5 ≤ 61.5

x4 + 1.5x5 ≤ 90

2x1 − x2 + x1x3 ≤ 80

x ∈ �0

(E5.1)

where

�0 = {x ∈ R5 :0≤ x1 ≤ 53, 0≤ x2 ≤ 85,0 ≤ x3 ≤ 40,

0≤ x4 ≤ 64,0≤ x5 ≤ 68}
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This problem has at least the following five local minima:

x1 = (7.43433668,17.1613413,11.0692684,2.30008488,25.8916639)

x2 = (41.0031922,2.00638433,0.000000000,23.6650756,5.08041128)

x3 = (3.42506894,18.5362782,6.35553388,0.000000000,34.2607198)

x4 = (40.3427010,0.685401961,0.000000000,41.7968590, 2.25130780)

x5 = (2.95219726,52.7658055,0.000000000,1.73641856,24.4606926)

with f (x1) = −61,865.6260,f (x2) = −65,652.2628,f (x3) = −68,311.5219,
f (x4) = −110,185.701andf (x5) = −116,491.474, respectively.

Strategy S1

Phase 1

The heuristic local search is performed initializing the solution of problem (E5.1)
from x = δxL + (1− δ)xU , with δ = 0,0.25,0.50,0.75,1. In this case, the local
solutionsx3, x4, andx5 are obtained. Thus, we setOUB := −116,491.474 and
x∗ = xb = x5.

Phase 2

In Step 2 of the algorithm, 9 contraction step are executed. Due to the large initial
relaxation gap, the performance parameter, SP, averages only a 4.974% in Step 2.
Clearly, for the contraction strategy to be effective in this problem, some branching
is required in order to tighten the convex representation. During the execution of
Steps 3–12 of the global optimization algorithm, 11 nodes are analyzed, and 73
contraction steps are performed with an average SP= 33.965%. The pointx5 is
proved to be a global minimizer.

Strategies S1, S3, and S5

Table 8 and Figures 1 and 2 show the results obtained for the solution of Example 5
with the Strategies S1, S3 and S5. Note that the simple branch and bound strategy
(Strategy S5), is very successful in initially reducing the large approximation gap
present in the problem. Nevertheless, this remarkable decrease in the approxima-
tion gap is paid with a rapid increase in the number of open nodes, which goes
up to a maximum of 19. Strategies S1 and S3, on the other hand, seem to be very
ineffective during the first few seconds of the computations, which are consumed
mainly in the contraction of bounds; S1 and S3 outperform S5 at the end by keeping
the number of open nodes low. The three strategies proved that the pointx5 is a
global minimizer for Example 5. All computations were performed on an IBM RS-
6000/530 workstation with a non-optimized GAMS/MINOS (Brooke et al. 1992)
implementation of the algorithm.
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Table 8. Computational results for the solution of Example 5 with Strategies S1, S3 and S5.

Feature S1 S3 S5

No. of nodes 11 11 157

No. of upper bounding problems 13 10 78

No. of contraction steps 82 61 –

Average SP 30.787 47.224 –

CPU(s) convex underestimating problems 0.66 (6.4%) 0.78 (9.3%) 10.49 (51.1%)

CPU (s) upper bounding problems 1.5 (14.6%) 1.21 (14.4%) 10.03 (48.9%)

CPU (s) contraction subproblems 8.13 (79.0%) 6.42 (76.3%) –

Total CPU time (s) 10.29 (100%) 8.41 (100%) 20.52 (100%)

7. Conclusions

In this paper we have addressed the global optimization of problems with concave
univariate, bilinear, and linear fractional terms. A tight convex underestimating
problem, and afinite contraction operationfor variable bounds have been used
to develop abranch and contractalgorithm for the solution of NLP problems.
A detailed description of the proposed algorithm has been presented, and tested
on several example problems using different options. Although the computational
experience is somewhat limited, the results suggest that the proposed approach
is effective, keeps the size of the tree relatively small, and in some cases totally
eliminates the need for branching.
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Appendix: Proofs of Theorems 1 and 3

Proof of Theorem 1

Let

l1(xi, xj ) = 1

xLj x
U
j

(xUj xi − xLi xj + xLi xLj ) (A.1)
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and

l2(xi, xj ) = 1

xLj x
U
j

(xLj xi − xUi xj + xUi xUj ) (A.2)

The approximation error ofl1(xi, xj ) is given by

11
ij = l1(xi, xj )−

xi

xj
=
(
xj

xLj
− 1

)(
xi

xj
− xLi

xUj

)
≥ 0 (A.3)

Similarly, the approximation error ofl2(xi, xj ) is

12
ij = l2(xi, xj )−

xi

xj
=
(

1− xj

xUj

)(
xUi

xLj
− xi

xj

)
≥ 0 (A.4)

Since11
ij and12

ij are both nonnegative over�ij , γ
lf

ij (xi, xj ) = Min[l1(xi, xj ),
l2(xi, xj )] overestimates the linear fractional termxi/xj over�ij . Furthermore, it
is easy to verify the following statements:
(i) l1(xi, xj ) = xi/xj atxj = xLj , and at the point(xLi , x

U
j ).

(ii) l2(xi, xj ) = xi/xj atxj = xUj , and at the point(xUi , x
L
j ).

(iii) Let T 1
ij be the triangle determined by the verticesv1 = (xLi , xLj ), v2 = (xUi , xLj )

andv3 = (xLi , xUj ), thenγ lfij (xi, xj ) = l1(xixj ) overT 1
ij .

(iv) Let T 2
ij be the triangle determined by the verticesv2, v3 andv4 = (xUi , x

U
j ),

thenγ lfij (xi, xj ) = l2(xi, xj ) overT 2
ij .

(v) �ij = T 1
ij ∪ T 2

ij .

If γ lfij (xi, xj ) were not the concave envelope ofxi/xj over�ij , there would be
a third overestimating affine functionl3(xi, xj ), such that

l3(xi, xj ) < γ
lf

ij (xi, xj ) for some(x̄i , x̄j ) ∈ �ij (A.5)

Assume that(x̄i , x̄j ) ∈ T 1
ij , then there are unique coefficientsλ1, λ2, λ3 ≥ 0,

with
∑3

i=1 λi = 1, such that(x̄i , x̄j ) = ∑3
i=1 λiv

i. Also, sincel3(xi, xj ) and
γ
lf

ij (xi, xj ) are affine functions overT 1
ij , we obtain

l3(x̄i, x̄j ) = l3
(

3∑
i=1

λiv
i

)
=

3∑
i=1

λil3(v
i)

γ
lf

ij (x̄i, x̄j ) = γ lfij
(

3∑
i=1

λiv
i

)
=

3∑
i=1

λiγ
lf

ij (v
i)

(A.6)

But at the vertices of T1ij we havel3(xi, xj ) ≥ xi/xj , andγ lfij (xi/xj ) = xi/xj ,
therefore (A.6) implies that

l3(x̄i, x̄j ) ≥ γ lfij (x̄i , x̄j )
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which is in contradiction with the assumption made in (A.5). A similar argument
holds when(x̄i, x̄j ) ∈ T 2

ij . The fact thatγ lfij (xi, xj ) = xi/xj at xj = xLj , and
xj = xUj can be easily verified by direct evaluation in the equation that defines

γ
lf

ij (xi, xj ), or through (A.3) and (A.4). 2
Proof of Theorem 3

Since problem (12) is convex, its solution satisfies the saddle point conditions with
the Lagrangian multiplier̃λ serving as the multiplier in the saddle point criteria
(see, e.g. Bazaraa et al. 1993). Consequently,Z = 8(0) − λ̃q, with q ∈ Rp, is
a supporting hyperplane atq = 0 of the graph of the perturbation function8(q)
defined as

8(q) ≡ Min
(x,y,z)

xi

subject to

Gk(x, y, z) ≤ qk k = 1,2, . . . , p

(x, y, z) ∈ Rn × Rn1 × Rn2

(A.7)

In other words,

8(q) ≥ 8(0)− λ̃q ∀q ∈ Rp (A.8)

(see, e.g. Minoux, 1986). Assuming that theOUBconstraint is active at the solution
(x̃, ỹ, z̃)� of problem (12) withλ̃1 > 0, and considering the perturbation vector
q = {q1,0,0, . . . ,0}, with q1 ≤ 0, (A.8) reads

8(q) ≥ 8(0)− λ̃1q1

from which it follows that

8(q) ≥ x̃i − λ̃1[f̂ (x, y, z) −OUB]
In particular, for8(q) ≤ xUi , we obtain

xUi ≥ x̃i − λ̃1[f̂ (x, y, z) −OUB]
or

f̂ (x, y, z) ≥ OUB− (xUi − x̃i )/λ̃1 2
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